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Introduction 

Throughout this paper, all rings are assumed to be commutative noetherian local 

rings with common residue field k. 

Let (R, m) be a local ring with maximal ideal m. If M is a finitely generated R- 
module, the Betti numbers of M are the integers b,(M) = dimk Tor”(M, k). The pur- 

pose of this paper is to study the asymptotic behaviour of the sequence b,(M) over 

two classes of rings: Rings of the form S/Jn, (S, n) local ring and J ideal of S, and 

rings (R, m) with m3 = 0. 

In [l, 5.81 Avramov states the following problem: 

(1) Is the sequence b,(M) eventually non-decreasing for any finitely generated 

module M over the local ring R? 

In [9] Ramras considers a more limited question: 

(2) Is it true that for an arbitrary finitely generated module over a local ring R, 
there are only two possibilities: either the sequence b,(M) is eventually constant, or 

lim; b,(M) = m? 

We give a positive answer to (2) for the classes of rings we study and a positive 

answer to (1) for the local rings with m3 = 0. 

We are also interested in the rate of growth of the sequences of Betti numbers, 

and the following definition will be useful: 

Definition. We say that the sequence b;(M) has exponential growth if there exist an 

integer no and real numbers C>A > 1 so that for each iz no the double inequality: 
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A’I.b;(M).C’ 

is satisfied. 

If for every non-free finitely generated R-module M the sequence b,(M) has ex- 

ponential growth and if no and A can be chosen independently of M, we say that 

the sequences of Betti numbers have uniform exponential growth over R. 
We also give information about the radius of convergence r,,,, of the Poincare 

series Pr(t)= Cizo bi(M)t’. We always have the lower bound rM>rk, and, of 

course, exponential growth gives an upper bound. 

Our main results are the following: 

A. Rings of the form R = S/Jn 

Let (S, n) be a local ring, J be an ideal and R = S/n J. Such rings have already been 

studied by Ramras [8] and Cover and Ramras [4]. In [4] they proved that the se- 

quence (bi(M))i, 1 is non-decreasing provided that J is a nonnilpotent ideal; conse- 

quently, question (2) has a positive answer in this case. We prove here more 

generally: 

Theorem A.3. Let R = S/n J and assume that n J # 0. Then, for any finitely generated 
R-module M, either limi hi(M) = 00 or b,(M) is eventually constant. Moreover the 
sequences (bzi(M))i, 1 and (bzi+ ,(M));,o are non-decreasing. 

With the hypothesis dimknJ/n2J?2, we have more information on the Betti 

numbers: 

Theorem A.2. Let R = S/nJ and suppose dim, n J/n’Jz 2. Then, the sequences of 
Betti numbers have uniform exponential growth over R. For all finitely generated 
non-free R-modules M, we have rk c: r, _ < a/2, and the sequences (b2i (M))i z I and 
(b2i + 1 (M))i z o are strictly increasing. 

In [S] Ramras has produced examples of rings over which the Betti numbers are 

strictly increasing, from b, onwards. We prove the new result: 

Theorem A.l. Let (S, n) be a local ring of Krull dimension dr2. Let J be a n- 

primary ideal and let R = S/n J. Then, for all finitely generated non-free R-modules 
M, the sequence (b;(M))i,, is strictly increasing. 

This theorem applies particularly to the case R = S/nP, p ~2 and dim S L 2 (This 

generalizes one of Gover and Ramras’s results [4, Theorem 1.11). 

B. Rings (R, m) with m3 = 0 

We prove that most of these rings have the following interesting property: 
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If M is a finitely generated non-free R-module, then k is a direct summand of one 

of the modules of syzygies of M. 

From this property and after examining some particular cases, we obtain: 

Theorem B. Let (R, m) be a local ring with m3 =O. Let n =dim, m/m2 and 
a = dimk m’. Assuming that the socle of R is m2, then: 

(1) Suppose n # 1 and (n, a) # (2,l). Zf afn - 1, then the sequences of Betti 
numbers have exponential growth. If a> n or if Pi(t) # (1 - nt + at2))‘, then these 
sequences have uniform exponential growth. If a = n - 1 and Pi(t) =( 1 - nt + at2)-‘, 
then for any finitely generated non-free R-module M, the sequence (b,(M));, , is 
either stationary or has exponentiaI growth. 

(2) Let M be any finitely generated non-free R-module. If Pi(t) # (1 - nt + at”))‘, 
then rM=rk. If Pi(t)=(l -nt+at2)-‘, then either r,=r, or else am- 1, Pi(t) = 

(1 -r,t))‘(l -r2t))l, rl and r2 are integers, and r, = r;’ > I-;’ = rk. 
(3) If the sequence (b;(M)),, , is not stationary, then there exists an integer j so 

that the sequence (b;(M));,j is strictly increasing (j= I if a> n). 

With the hypothesis of Theorem B we have the following corollary: 

Corollary. Suppose that the radius of convergence rk of Pi(t) is transcendental. 
Then, if M is a finitely generated non-free R-module, the Poincare series P;(t) is 
not rational. 

The following proposition complements Theorem B: 

Proposition 3.9. Let (R, m) be a local ring with m3 = 0, and m2#0. Assume 
sot(R) # m2. Then: 

(1) The sequences of Betti numbers have uniform exponential growth. 
(2) For all non-free R-modules M, we have r ,,,, = rk and the sequence (b,(M));, , 

is strictly increasing. 

The proofs of the theorems are given in Sections 2 and 3. 

1. Some preliminaries 

Here, and in all that follows, the modules are assumed to be finitely generated. 

For an R-module M let P. : .-. +P,, + P,_ , -+.a. ‘PO +O be a minimal free resolu- 

tion of M. Thus, b,(M) is also the rank of the free module Pi. The modules of 

syzygies of M are defined for n 2 1 by: syz”(M) = Im(P, ---t P,_ 1). By minimality, 
we have syz”(M)cmP,_, . It is well-known that bi(syzj(M)) = bj+j(M). 

We now observe that there exists a lower bound for the radius of convergence of 
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the Poincare series, and that the Betti numbers are exponentially bounded from 
above. 

Proposition 1.1. Let (R, m) be a local ring, and M be a R-module. Then: 
(1) The radius of convergence r&_, of Pf(t) satisfies the inequality rM L rk. 
(2) There exists a constant C> 1 so that for iz 1, b;(M)< C’. 

First we need a lemma: 

Lemma. Let M be an R-module. Then, there exists a constant D so that for iz0, 
b,(M) ~ Dbi(k). 

Proof. For a module of finite length, we can choose D = I(M) (l(M) denotes the 
length of a module). This follows easily by induction on I(M). For an arbitrary M, 
by a result of levin [7], there exists for a sufficiently large integer p, an injective map 
Tor$(M, k)-‘Tor$(M/mPM, k), induced by the projection M+M/mPM. This 
yields 

b,(M) I bj(M/mPM) 5 I(M/mPM)bi(k). 

We can now prove the proposition. 
(1) is obvious from the lemma. For M= k, (2) is well-known (and results from the 

classical inequality for Pi(t) due to Serre). Now, for an arbitrary M, (2) follows 
easily from the lemma. 

2. Rings of the form S/nJ 

Let (S, n) be a local ring and J be an ideal of S. 
Let R = S/nJ, and m its maximal ideal. Since every syzygy module over R is a sub- 

module of some mRb=nRb, every syzygy module is annihilated by J (as S- 
module). 

We shall prove Theorem A.l, first proving the following proposition: 

Proposition 2.1. Let (S, n) be a local ring and J be a n-primary ideal. Let c_, = 
[(S/J), c,,=l(J/nJ) and for ir 1, Ci=[(n’J/n’+’ J). Assume that for some integer 
i 2 0 we have Ci > c_, . Then, for every non-free module M over R = S/n J, the se- 
quence (bj(M));,, is strictly increasing, and the sequences of Betti numbers have 
uniform exponential growth over R. 

Proof. Let R = S/n’+ ‘J, and tit its maximal ideal. Let N be a non-free R-module 
and M=syzP(N). With K and L denoting the first syzygy modules of M respec- 
tively over R and I?, we have a commutative diagram with exact rows: 
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b O-K-R -M-O 

where b=&(M), LCrhEb, KCmRb. As Ramras remarked [8, Theorem 3.21, K 

and L have the same minimal number of generators b, = b,(M). In order to show 

this, we observe that, since M is annihilated by J, L contains JRb. We thus have 

ker f= n(JRb) C nL. Consequently, the surjective map f induces an isomorphism: 

L/titL=L/nLsK/nK=K/mK= kbl. 

We then look for bounds for the length of L. Since L is a syzygy module over 

R, it is annihilated by n’J and thus is a quotient of (S/n’J)bl (we use the conven- 

tion no = S). This yields the inequality: 

l(L)~b~l(S/n’J)=b,(c_, +co+ ..* +c;_~). 

On the other hand, L contains JPb= (J/n” ’ J)b and consequently: 

f(L)~bl(J/n’~‘J)=b(c,+ ... +ci). 

We can now write for pr 1: 

b~+,(N)/b~(N)=b~(M)/bo(M)r(~o+...+~i)/(~_~+...+ci_~)=e>l 

and the desired conclusion follows. 

We can now prove Theorem A. 1. 

2.2. Proof of Theorem A.l. Since the ideal J is n-primary, its Krull dimension as 

an S-module is equal to the Krull dimension of S, and so, dim, J= dz2. It is well- 

known that for large i, Ci=I(n’J/n”’ J) is a polynomial in i of degree d- 1. It 

follows that limiCi= 03. In particular, there exists i such that CC, <ci, and the 

preceding proposition applies. 

We now give the proof of Theorem A.2. 

2.3. Proof of Theorem A.2. Let N be an R-module and M=syzP(N). Let 

I?= S/n2J. As in Proposition 2.1, K and L denote the first syzygy modules of M 

over R and R. Since L is annihilated by nJ, L is also an R-module. We now have 

an exact sequence of R-modules: 

f 

where b = ho(M). Since K and L have the same minimal number of generators, this 
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sequence yields a surjective map: Torf(K, k) --f Tort((nJ/n*J)‘, k). Letting c = 

dimk(nJ/n2J), we obtain: 

b,+,(N) = b,(K)2cb,(M)=cb,(fv). 

Since we suppose cr2, it follows that the sequences (b,i(N));,r and (6*;+ r(N));,e 

are strictly increasing. We also have the inequality: rM<\/2/2. For i 2 3 we can also 

write: b;(N)?A’ with A =c~‘~ > 1. The proof of the theorem is thus complete. 

We conclude this section with the proof of Theorem A.3. 

2.4. Proof of Theorem A.3. In view of Theorem A.2 it is enough to consider the 

case dim,(nJ/n*J) = 1. Let N be an R-module. Using the preceding proof we see 

that the sequences (b2i(N))iZ1 and (b2;+ r(N))i>e are non-decreasing. We must pro- 

ve that if one of these sequences is eventually constant, then so is the sequence 

b;(N). Since b;(N) = rank Pi, where Pi is the i-th free module in a minimal free 

resolution of N, it suffices to establish the following lemma. 

Lemma. Let R be a local ring, and let 

be a complex of finitely generated free R-modules, which is exact except (possibly) 
at FO. Suppose that for all i we have rank F2; = rank F,= a and rank F2;+3Z 
rank Fz;+ 1. Then the sequence (rank F;);,o is eventually constant. 

Proof. As in [2, Proposition 5.31, by localizing at a minimal prime of R (this does 

not affect the rank of Fi) we may assume R to be artinian, and thus of finite 

length. Now 

I(F,;+ i) = rank F2;+, . I(R) I I(F2;+*) + 1(F2;) = 2a 1(R). 

Consequently the sequence (rank F2;+ l)iz0 is bounded above and thus, is eventually 

constant. By removing a right-hand part from the complex F., we may assume that 

for all i, rank F2;+ 1 = b. Letting Ai = coker(Fi+ 1 -+ Fi) the exact sequence: 

0-‘~42n+, -+F2, +F2n- 1 
-+ . . . -f&,-+Ao+(-j 

yields: 
,=I? i=n 

C /@‘2i)=;;, I(F~;-,)+~(A~,+,)+I(Ao), 
,=!I 

or, 

(n + 1)a I(R) = nb I(R) + /(A,, + 1 > + KA,). 

Since I(A2n+ I)<a I(R), we have a- bs [l(Ao)/l(R)]/n. As n can be arbitrarily 

large, we have a< b. But this same argument may be applied to the sequence 

0-*A2n+2jF2n+,-‘F2n~...-*F,~A,~0 
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in which the roles of a and b are reversed, so that we get bsa. Hence a= 6. 

3. Rings (R, m) with nt3 = 0 

Let (R, m) be a local ring with m3 = 0. We suppose that sot(R) = m2 (here and 

below, soc( *) = socle(. )). 

Let n =dimk(m/m2) and a=dimk(m2). R is a complete intersection if, and only 

if, n = 1 or (n, a) = (2,l). Gulliksen has shown [5] that over a complete intersection 

the sequences of Betti numbers are polynomially bounded from above (and thus, 

they do not have exponential growth). For this reason we assume that nf 1 and 

(n, a) # (2,l) in the first part of Theorem B. It should also be noted that, if n # 1, 

the sequence (b;(k))+, is strictly increasing. 

If M is a syzygy module over R, then m2M= 0, and we shall prove some lemmas 

for modules satisfying this last condition. 

First, we need a definition 

Definition 3.1. Let M be a non-zero R-module so that m2M= 0. We say that M is 

p-exceptional, pz 1, if the R-module k is not a direct summand of the modules 

syz’M, . . . , syzPM. If M is p-exceptional for every p, we say that A4 is exceptional. 

If k is exceptional, we say that the ring R is exceptional. 

Lemma 3.3 and Lemma 3.6, will justify this terminology. 

We begin with an obvious lemma, available for every local ring. 

Lemma 3.2. Let M be a R-module. The following statements are equivalent: 
(1) The R-module k is not a direct summand of M. 
(2) We have the inclusion soc(M)CmM. 

Notations. Let f(t) = En>,, a,t”EZ[[t]] be a formal series; we write f(t)\, for the 

polynomial ~~~~ a,t”. For a module A4 with m2M=0, we let s(M) =dim,(mM), 

thus, I(M) = b,(M) + s(M). 

The following lemma gives a criterion for a module to be p-exceptional. 

Lemma 3.3. Let A4 be a non-zero R-module so that m2A4= 0. Then, A4 is p-excep- 
tional if and only if we have: 

P/(t) Ip = ((b,(M) - s(M)t)/( 1 - nt + at2>) jp. 

Proof. Let O-+K+Rb+M+O be exact with KcmRb and b=b,(M). Since 

m2A4= 0 we have sot(K) = soc(Rb) = m2Rb. Since mKC sot(K), by virtue of Lemma 

3.2 we get: 
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k is not a direct summand of K if and only if mK= sac(K), or, since b,(K) = 

I(K) -s(K), if and only if be(K) = 1(K) - dimk sot(K). But now, 

ho(K) = b,(M), dimk sot(K) = abo(M), 

f(K) =1(P) - l(M) = n&(M) + ab()(M) -s(M). 

Thus, we can state: k is not a direct summand of K=syz’(M) if and only if: 

E(M): bi (M) = nbo(M) -s(M). 

Now, M is p-exceptional if and only if the equalities E(M), E(syz’(M)), . . . , 

E(syzP-l(M)) hold. Since bo(syz’(M)) = hi(M), b,(syz’(M)) = bj+ 1(M), and noting 

that if k is not a direct summand of syz’(M) then s(syz’(M)) = abi_ 1(M), we can 

conclude that: M is p-exceptional if and only if: 

b,(M) = nbo(M) -s(M), 

bi(M)=nbi_l(M)-abi_2(M), 2SiIp. 

But it is just another way to restate the lemma. 

Corollary 3.4. (1) A non-zero R-module M so that m*M=O is exceptional if and 
only if P?(t) = (b,(M) - s(M)t)/(l - nt + at2)-‘. 

(2) The ring R is exceptional if and only if Pi(t) = (1 - nt + at*)-‘. 

Lemma 3.5. Let M be a non-zero R-module such that m*M= 0. Then, for j L 2 we 
have the inequality: bj(M) 1 nbj- ,(M) - abj_,(M). 

Proof. Let N= syzj- l(M). Fr om the exact sequence: 0 -+ mN + N + N/mN -+ 0, we 

get: b,(N)rb,(N/mN)- b,(mN). Since b,(N)= bj(M), b,(N/mN)=nbj_,(M) and 

since bo(mN)<abj_2(M)r we have: bj(M)>nbj_l(M) -abj_2(M). 

We now come to a key lemma: 

Lemma 3.6. Let M be a non-zero R-module such that m*M=O. If M is p- 
exceptional, then k is p-exceptional. In particular, if M is exceptional, then so is the 
ring R. 

Proof. Since k is not a direct summand of m, k is always l-exceptional. Now, assum- 

ing that k is p - 1 exceptional and that there exists a p-exceptional module M, the 

exact sequence O+mM+M+M/mM-+O yields for all j~l: bo(M)bj(k)S 
bj(M) + s(M)bj_ ,(k). By using Lemma 3.3, we can deduce from this, the following 

coefficientwise inequality: Pi(t) Ips (1 - nt + at*)-’ Ip. In particular, we have 

bp(k)<nb,_,(k)-ab,_2(k), and, by Lemma 3.5, this inequality is in fact an 

equality. It follows that k is p-exceptional. 
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Remark. From the proof above, it is easy to deduce that the induced map: 

TorT(mM, k)+Tor$r4, k) is zero for Orj~p. For another proof of this, see [lo, 

Lemma 41. 

We are now in a position to prove Theorem B. 

3.7. Proof of Theorem B. We begin by the proof of the assertions (1) and (2). Let 

M be a non-free R-module. Replacing, if necessary, M by syz’(M), we may assume 

that m2M= 0. 

(a) We first suppose that the ring R is not exceptional. Let p. be the smallest in- 

teger p such that Pi(t) lP # (1 - nt + a?-’ IP. By virtue of Lemmas 3.3 and 3.6, 

there exists an integer j, 1 rjspO, such that k is a direct summand of syzj(M). We 

get: b,+j(M)=b[(SyZj(M))?b/(k). S ince the sequence b,(k) is increasing, we also 

have: 

Hence, we get r, 5 rk, and by Proposition 1.1, r,,,_, = rk. Now, to obtain the uniform 

exponential growth, it is clearly enough to prove that: 

There exist a real C > 1 and an integer I such that for i S/ 

b;(k)? c’. 

But, it has been proved by Avramov [l, Theorem 6.21 that this last statement is 

in fact a characteristic property of rings which are not complete intersections, or 

regular; and this applies to our particular case. (Here, C and 1 could also be obtained 

by elementary manipulations.) 

(b) Let us now suppose that the ring R is exceptional, therefore, Pi(t) = 

(1 - nt + dpl. If A4 is not exceptional, then as above, k is a direct summand of 

some syzj(M) and we conclude that r M =r, and that the sequence b,(M) has ex- 

ponential growth. 

Now, supposing M is exceptional, therefore, by Corollary 3.4, 

Pf(t) = (b,(M) - s(M)t)/( 1 - nf + a?-‘. 

Thus, the sequence ui(M)=bi+i(A4)/b,(M) is given from U,(M) by induction: 

ui+ 1 W) =f(“i(M))9 f(X) = n - a/X. 

Consider, for X>O, the graphs of the curve Y=f(X) = n - a/X and the line 

Y = X. Their intersections, if any, are precisely the fixed points off, or equivalently, 

positive roots of the equation X2 - nX+ a= 0. Suppose this equation has no 

positive real root. Then the curve lies entirely below the line, i.e. for all X>O, 

f(X)< X. Since u;(M) >O, the sequence {f’(uo(M))} is both bounded below and 
decreasing, and therefore has a limit. This limit is necessarily a fixed point off and 

so we have a contradiction. Thus the quadratic does have two positive real roots, 

say rl and r2 with r, sr2. Furthermore, as the smaller of the two roots of 
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1 -nX+aX2=0, rz’ must be the radius of convergence of (1 - nt +at2)-’ =P$(t) 
and hence r2 = r;‘. 

Similar reasoning about f shows that z+,(M) 2 rl. Then, either u,(M) = rl and for 

every i, ui(M) = rl, or else r2 is the limit of the sequence U,(M). 

In the first case, rl and r2 are necessarily positive integers, and consequently 

a? n - 1. The sequence b,(M) is constant if rl = 1 (and then, a = n - 1) and has ex- 

ponential growth if r, > 1. We have P!(t) = b,(M) (1 - rlt)-’ and r, = r;’ 2 rF1 = r,. 

In the second case, r,,,, = rF1 = rk. If (n, a) # (2, l), rk > 1 and there exist an integer 

p and a real C> 1 such that for i>p, u,(A4) =bi+,(M)/b,(M)> C> 1. This shows 

that the sequence b;(M) has exponential growth. 

So, we have established the assertions (1) and (2), except for the uniform exponen- 

tial growth when R is exceptional and a> n. This will be proved below, in the course 

of proving assertion (3). 

Proof of (3). Let N be a non-free R-module and M= syz’(N). Let O+K+ Rb + 
IV+ 0 be exact with b = b,(M) and K CmRb. We can write K = K’@ k’ where K’ is 

free of direct summands isomorphic to k. Since K’ is a R/m2-module generated by 

b,(M) - r elements, we have: [(K’) I (b,(M) - r)l(R/m2). 
From the fact that A4 is a syzygy module we have soc(RbO)= sot(K)= 

soc(K’) @ k’= (by Lemma 3.2) mK’@ k’. Thus m2Rb0 = mK’@ k’, and so I(mK’) = 

a&,(M) - r. Since f(K’/mK’) = bl (A4) - r, we have l(K’) = (b, (M) - r) + (ab&d) - r). 
Thus we obtain: 

nbi+ i(N) = nbi(A4) 2 a&(M) + r(n - 1) L &c(M) =&i(N). 

So, if a> n the sequence (&(N)),, , is strictly increasing, and the sequences of Betti 

numbers have uniform exponential growth. 

Now supposing a = n > 1, we see that the sequence (bi(N))i, I is non-decreasing. 

If for some j L 1, bj+ ,(N) = bj(N), then we necessarily have syzj+ ‘(N) = (R/m2)bl 

and so, the sequence (bi(N));.j+ 1 is strictly increasing. If a=n = 1, it is easily seen 

that the sequence (bi(N))i,, is stationary. 

We use a different argument for as n - 1. Since limi hi(N) = 03, there exists j L 1 

such that bj+,(N)>bj(N). By Lemma 3.5, bj+z(N)rnbj+,(N)-abj(N)>bj+1(N). 
Thus, the sequence (bi(N))i,j is strictly increasing. This completes the proof of 

Theorem B. 

3.8. Examples. (1) Non-exceptional rings. The first two terms of the series P;(t) 
and (1 - nt + a?-’ are always identical. Using an explicit form for b,(k), [6, 
4.4.31, we see that the third terms are different if ei # n(n + 1)/2-a, where cl is the 

first deviation of the ring R. 
There exists a ring isomorphism R = S/J where (S, n) is a regular local ring and 

.Z is an ideal such that n3C .ZCn2. It is known that ei =dimkJ/n.Z, [6, 1.4.151. 

We may consider a minimal system of generators of J: xi, . . . , xp, . . . , x,,, such 

that xi $ n3 if i up and Xi E n3 if p < i. Let Z be the ideal generated by xi, . . . , xp. 
From the exact sequence 
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0 + J/n3 + n2/n3 +n2/J + 0, 

and using the isomorphisms J/n3 = I/n3, n2/J- m2, we see that the preceding con- 

dition on ct means that Zf J, or in other words, in a minimal system of generators 

of J, there are elements of n3. 

Let R’=S/Z with maximal ideal m’. Then R=R’/m’3. If I#J then mJ3 = 

m’. m”#O, thus, Theorem A.3 applies, and by using the result of Lemma 3.5, the 

following improvement of Theorem B can be obtained: If aln, the sequence 

(b;(N)),., is strictly increasing. 

(2) Exceptional rings. Let R = k[X, , . . . , X,1/1, where I is an ideal containing 

(X,, ... , X,)3 and generated by a set of monomials of degree two in the Xi. 

Then it is known that P,k(t)=(l-nt+at’)-‘, [3]. If for all i, lliln, 

Xj.(Xi,..., X,) Q I, then sot(R) = m2 and R is exceptional. 

Consider in particular the ring R = k[X,, . . . . XP, Y,, . . . . Y,]/I where I= 

(Xi, a.. , X,)2+(Yi, . . . . Yq)2 and qsp. We have Pi(t)=(l -pt)-‘(1 -qt)-‘. Letting 

N=R/(Y,,..., Y,), we have syz’(N)= Nq and, thus, P:(t) = (1 - qt)-‘. If q = 1 the 

sequence (bi(N))i,o is constant, and if q <p we have the inequality r, = q-l >p-’ = 

rk. 

Let (R, m) be a Gorenstein ring with m3 = 0 and n > 1. This ring is exceptional as 

it results from the work of Sjodin [lo]. Eisenbud [2, $31 has observed that the Betti 

numbers bi(MP) of MP = HomR(syzP(k), R) are strictly decreasing for 01 i<p. In 

fact, b,(M,) = b,,_;_,(k). Since bPP1 (M,) = 1, the sequences of Betti numbers over 

R do not have uniform exponential growth. 

We turn now to the case soc(R)#m’. Since m3 =O, it follows from Lemma 3.2, 

that this is equivalent to assuming that k is a direct summand of m. It is easily seen 

that over any local ring satisfying this last condition, k is a direct summand of any 

second syzygy module. From this, we deduce the following proposition. 

Proposition 3.9. Let (R, m) be a local ring with m3 = 0, and m’#O. Assume 
sot(R) # m2. Then: 

(1) The sequences of Betti numbers have uniform exponential growth. 
(2) For ail non-free R-module M, we have r,,,, = rk and the sequence (hi(M));, 1 

is strictly increasing. 
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